Selon une étude menée par des chercheurs des Sandia National Laboratories, un nouveau matériau à base de fibres de carbone pourrait, s'il était développé commercialement, apporter des avantages en termes de coûts et de performances à l'industrie éolienne.
Les pales d'éoliennes en fibre de carbone pèsent 25% de moins que celles fabriquées à partir de matériaux traditionnels en fibre de verre. Cela signifie que les pales en fibre de carbone pourraient être plus longues que celles en fibre de verre et, par conséquent, capter plus d'énergie dans les endroits où le vent est faible. Le passage à la fibre de carbone pourrait également prolonger la durée de vie des pales, car les matériaux en fibre de carbone ont une grande résistance à la fatigue, a déclaré Brandon Ennis, chercheur en énergie éolienne au Sandia Labs et principal investigateur du projet.
The project is funded by DOE’s Wind Energy Technologies Office in the Office of Energy Efficiency and Renewable Energy. Partners on the project include Oak Ridge National Laboratory and Montana State University.
Of all the companies producing wind turbines, only one uses carbon fibre materials extensively in their blade designs. Wind turbine blades are the largest single-piece composite structures in the world, and the wind industry could represent the largest market for carbon fibre materials by weight if a material that competed on a cost-value basis to fibreglass reinforced composites was commercially available, said Ennis.
Le coût est la principale considération lors de la conception des composants dans l'industrie éolienne, mais les fabricants de turbines doivent également construire des pales qui résistent aux charges de compression et de fatigue qu'elles subissent lorsqu'elles tournent pendant une période pouvant aller jusqu'à 30 ans.
Ennis et ses collègues se sont demandé si une nouvelle fibre de carbone bon marché mise au point au laboratoire national d'Oak Ridge pouvait répondre aux besoins de performance tout en apportant des avantages en termes de coûts à l'industrie éolienne. Ce matériau part d'un précurseur largement disponible dans l'industrie textile, qui contient d'épais faisceaux de fibres acryliques. Le processus de fabrication, qui chauffe les fibres pour les convertir en carbone, est suivi d'une étape intermédiaire qui consiste à tirer la fibre de carbone pour en faire des planches. Le processus de pultrusion pour la fabrication des planches permet de créer des fibres de carbone très performantes et fiables, nécessaires à la fabrication des lames, et permet également d'atteindre une capacité de production élevée.
Lorsque l'équipe de recherche a étudié cette fibre de carbone bon marché, elle a découvert qu'elle était plus performante que les matériaux commerciaux actuels en ce qui concerne les propriétés spécifiques au coût qui présentent le plus d'intérêt pour l'industrie éolienne.
L'ORNL a fourni des échantillons de développement de fibre de carbone provenant de sa Carbon Fiber Technology Facility et des composites fabriqués à partir de ce matériau, ainsi que des composites similaires fabriqués à partir de fibre de carbone disponible dans le commerce, à des fins de comparaison.
Des collègues de l'université d'État du Montana ont mesuré les propriétés mécaniques de la nouvelle fibre de carbone par rapport à celles des composites en fibre de carbone et en fibre de verre standard disponibles dans le commerce. M. Ennis a ensuite combiné ces mesures avec les résultats de la modélisation des coûts de l'ORNL. Il a utilisé ces données dans une analyse de la conception des pales afin d'évaluer l'impact sur le système de l'utilisation de la nouvelle fibre de carbone, au lieu de la fibre de carbone standard ou de la fibre de verre, comme principal support structurel d'une pale d'éolienne. L'étude a été financée par l'Office des technologies de l'énergie éolienne du ministère américain de l'énergie.
Ennis et ses collègues ont constaté que le nouveau matériau en fibre de carbone présentait une résistance à la compression supérieure de 56% par dollar à celle de la fibre de carbone disponible dans le commerce, qui constitue la référence de l'industrie. Généralement, les fabricants s'accommodent d'une résistance à la compression plus faible en utilisant plus de matériaux pour fabriquer un composant, ce qui augmente les coûts. Compte tenu de la résistance à la compression plus élevée par rapport au coût de la nouvelle fibre de carbone, les calculs d'Ennis ont permis de prévoir une économie d'environ 40% sur les coûts des matériaux pour un capuchon de longeron, qui est le principal composant structurel d'une pale d'éolienne, fabriqué à partir de la nouvelle fibre de carbone par rapport à la fibre de carbone commerciale.

