Новый материал из углеродного волокна может принести ветроэнергетике выгоду в плане стоимости и производительности, если будет разработан на коммерческой основе, говорится в исследовании, проведенном под руководством ученых из Национальной лаборатории Сандия.
Ветряные лопасти из углеродного волокна весят на 25% меньше, чем лопасти из традиционного стекловолокна. Это означает, что лопасти из углеродного волокна могут быть длиннее стекловолоконных и, следовательно, улавливать больше энергии в местах со слабым ветром. Переход на углеродное волокно также может увеличить срок службы лопастей, поскольку материалы из углеродного волокна обладают высокой усталостной прочностью, говорит Брэндон Эннис, исследователь ветроэнергетики в Sandia Labs и главный исследователь проекта.
The project is funded by DOE’s Wind Energy Technologies Office in the Office of Energy Efficiency and Renewable Energy. Partners on the project include Oak Ridge National Laboratory and Montana State University.
Of all the companies producing wind turbines, only one uses carbon fibre materials extensively in their blade designs. Wind turbine blades are the largest single-piece composite structures in the world, and the wind industry could represent the largest market for carbon fibre materials by weight if a material that competed on a cost-value basis to fibreglass reinforced composites was commercially available, said Ennis.
Стоимость является основным фактором при проектировании компонентов в ветроэнергетике, однако производители турбин также должны создавать лопасти, выдерживающие сжимающие и усталостные нагрузки, которые лопасти испытывают при вращении в течение 30 лет.
Эннис и его коллеги задались вопросом, сможет ли новое недорогое углеродное волокно, разработанное в Национальной лаборатории Оук-Ридж, удовлетворить требования к эксплуатационным характеристикам и при этом принести выгоду ветровой промышленности. Для изготовления этого материала используется широкодоступный исходный материал из текстильной промышленности, содержащий толстые пучки акриловых волокон. Процесс производства, в ходе которого волокна нагреваются для преобразования в углерод, сопровождается промежуточным этапом, в ходе которого углеродное волокно вытягивается в доски. Пултрузионный процесс изготовления досок позволяет получить углеродное волокно с высокими эксплуатационными характеристиками и надежностью, необходимыми для производства лезвий, а также обеспечивает высокую производственную мощность.
Когда исследовательская группа изучила это недорогое углеродное волокно, то обнаружила, что оно превосходит существующие коммерческие материалы по характеристикам, представляющим наибольший интерес для ветровой промышленности.
ORNL предоставил образцы углеродного волокна из своего технологического центра Carbon Fiber Technology Facility и композиты, изготовленные из этого материала, а также аналогичные композиты, изготовленные из коммерчески доступного углеродного волокна для сравнения.
Коллеги из Университета штата Монтана измерили механические свойства нового углеродного волокна в сравнении с коммерчески доступными композитами из углеродного волокна и стандартного стекловолокна. Затем Эннис объединил эти измерения с результатами моделирования затрат, полученными в ORNL. Он использовал эти данные в анализе конструкции лопасти для оценки системного воздействия использования нового углеродного волокна вместо стандартного углеродного волокна или стекловолокна в качестве основной структурной опоры ветровой лопасти. Исследование финансировалось Управлением технологий ветроэнергетики Министерства энергетики США.
Эннис и его коллеги обнаружили, что новый углеволоконный материал обладает на 56% большей прочностью на сжатие в расчете на доллар, чем коммерчески доступное углеволокно, которое является базовым для отрасли. Как правило, производители компенсируют более низкую прочность на сжатие, используя больше материала для изготовления компонента, что приводит к увеличению стоимости. Учитывая более высокую прочность на сжатие в расчете на стоимость нового углеродного волокна, расчеты Энниса предсказали экономию в 40% в стоимости материала для крышки лонжерона, который является основным структурным компонентом лопасти ветряной турбины, изготовленной из нового углеродного волокна, по сравнению с коммерческим углеродным волокном.

